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ABSTRACT

NOAA'’s second-generation reforecasts are approximately consistent with the operational
version of the 2012 NOAA Global Ensemble Forecast System (GEFS). The reforecasts allow
verification to be performed across a multi-decadal time period using a static model, in
contrast to verifications performed using an ever-evolving operational modeling system.
This contribution examines three commonly used verification metrics for reforecasts of
precipitation over the Southeast United States: equitable threat score, bias, and ranked
probability skill score. Analysis of the verification metrics highlights variation in the ability
of the GEFS to predict precipitation across amount, season, forecast lead time, and location.
Beyond day 5.5, there is little useful skill in quantitative precipitation forecasts (QPF) or
probabilistic QPF. For lighter precipitation thresholds (e.g., 5 and 10 mm 24 h-1), use of the
ensemble mean adds about 10% to forecast skill over the deterministic control. QPFs have
increased in accuracy from 1985 to 2013, mostly due to improvements in observations.
Results of this investigation are a first step toward using the reforecast database to isolate
weather regimes that the GEFS typically predicts well, and regimes that the GEFS typically

predicts poorly.
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1. Introduction

Attendant with the development of advanced numerical weather prediction (NWP)
systems is the need to verify the capabilities of these systems. In particular, the
quantitative precipitation forecast (QPF) is important to society and challenging for NWP.
At what forecast lead time does NWP QPF skill effectively vanish? How much additional
skill is provided by the use of ensemble forecasts, versus deterministic forecasts? Has QPF
skill changed over time? The development of NOAA’s second-generation reforecast
database (Hamill et al. 2013) allows these questions to be addressed. Due to challenges in
verifying QPF in areas where the precipitation climatology varies considerably (Hamill and
Juras 2006), our focus is restricted to the southeastern United States (SEUS), where
climatological precipitation characteristics are relatively homogeneous (Prat and Nelson
2013).

The SEUS receives precipitation associated with a variety of meteorological
phenomena, including tropical cyclones, baroclinic waves, mesoscale convective systems,
and localized diurnal convection (Moore et al. 2014). The juxtaposition of the Appalachian
Mountains to the Atlantic Ocean and Gulf of Mexico creates an environment where QPFs
are particularly challenging. While QPFs from NWP and forecasters have improved over the
last 30 years (Novak et al. 2014), challenges remain. A static model run over multiple
decades allows for verifications that span time scales longer than the periods that
operational models remain unchanged. Long-term verification of reforecast data provides a
sufficiently large sample size to allow the development of model climatology, which can

then be compared with the climatology of the atmosphere.
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NWP verification can inform forecasters of the strengths, limitations, and best
applications of a modeling system. Ensembles attempt to provide a measure of confidence
in a particular outcome, but if the model driving the ensemble system has difficulty in
predicting a phenomenon, the ensemble spread can be misleading to a forecaster and
therefore has reduced utility. Thus, it is helpful to document the accuracy of a modeling
system’s QPFs over long periods, and to provide this information to forecasters in a manner
that allows for easy incorporation into the forecast process. As the value added by human
forecasters over model QPF is diminishing (Novak et al. 2014), the need to leverage any
sources of available information to improve upon model QPF becomes increasingly critical.

NOAA'’s second-generation reforecasts are approximately consistent with the
operational 00 UTC cycle of the 2012 NOAA Global Ensemble Forecast System (GEFS). The
11-member reforecasts were created at ~0.5° grid spacing for week 1+ and ~0.75° grid
spacing for week 2+ forecasts. Due to the change in grid spacing, we use only 0-7 day
reforecasts. The reforecasts were verified using gridded precipitation data from the NOAA
Climate Prediction Center Daily U.S. Unified Precipitation Dataset (Chen et al. 2008). This
analysis is comprised of gauge observations interpolated onto a 0.25° grid. The 29 years
(January 1985 - December 2013) of verification undertaken here precludes the use of a
multi-sensor precipitation dataset. The reforecasts and precipitation data were
interpolated to a common 0.5° x 0.5° grid over the SEUS (Fig. 6) using bilinear
interpolation. As the period of observed precipitation is from 12 UTC - 12 UTC, and the
reforecasts were initialized at 00 UTC, the lead times used in this study are 1.5 days (12-36
h) through 7.5 days (156-180 h). For in-depth explanation of verification metrics, the

reader is directed to Wilks (2011, Ch. 8) and Jolliffe and Stephenson (2012, Chs. 2 and 3).



104
105
106
107
108
109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

To enhance readability, all time-series of yearly quantities have been filtered with the 1-2-1
or “Hanning” filter (see Von Storch and Zwiers 1999).
2. Verification of Deterministic Forecasts

The equitable threat score (ETS) evaluates model ability to predict a two-category
event. Values range from -1/3 to 1, where 1 represents a perfect forecast and 0 or less

indicates unskilled forecasts. ETS is given by:

h — hc L _(h+ fa)(h+m)
h+ fa+m—hc’ €= n

(1)
Here, h are hits, fa are false alarms, m are misses, and hcrepresents hits correct by chance
(nisequal to h + fa + m + cn, where cn are correct negatives).

Time series of annual ETS depict an upward trend (Fig. 1). As the model and data
assimilation system used in the reforecasts remains static over the period, the upward
trend in ETS is mostly due to improvement of the initial conditions used by the model
through increased and higher quality observations. Alternatively, the upward trend may in
part be explained by changes in the quality of the verification dataset. The year-to-year
variability in ETS evidently results from variability in the model’s ability to predict the
phenomena that lead to precipitation in those years. Also, ETS tends to increase with
fractional area coverage of the phenomenon (Hamill 1999; Moore et al. 2014). Model QPF
errors arise from both the quality of the model and observations, and the model
atmosphere’s sensitive dependence to initial conditions (Zhang et al. 2006, after Lorenz
1996). ETS decreases with increasing lead time and with increasing threshold. Beyond day

5.5, average ETS values are below 0.1 (except for the 5 mm threshold), indicating little to

no skill. When the average ETS over 1985-1989 is compared with the average ETS over
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2009-2013, an increase in ETS is seen for all lead times at all thresholds. When these 5-year
average ETS values are averaged over the four thresholds in Fig. 1, the increase in ETS over
the period for day 1.5 forecasts is 0.08. For day 7.5, the increase in ETS is 0.02. Thus, when
considered across all four thresholds, day 1.5 ETS values have increased 3 times as much as
day 7.5 ETS values over the nearly 30 year period. When averaged over all thresholds, the
most recent day 3.5 reforecasts (ETS of .20) are equivalent in accuracy to the oldest day 1.5
reforecasts (ETS of .21). This increase in useful lead time is likely due to increases in the
quantity and quality of observations, and illustrates the considerable impact these better
observations have had on QPF over the SEUS.

Considerable seasonal variability in ETS is present for the 20 mm threshold (Fig. 2).
The 20 mm threshold is chosen for further analysis, as it represents an “intermediate”
amount of precipitation in the SEUS, and it occurs with sufficient frequency to allow
meaningful analysis. Average ETS is highest in winter (0.19), followed by fall (0.16), spring
(0.15), and summer (0.07), consistent with Fig. 3 of Hamill et al. (2013). This order in
average ETS persists for days 1.5 through 5.5. At days 6.5 and 7.5, average ETS for winter,
spring, and fall are essentially the same, within .01. Beyond day 5.5, ETS values for all
seasons are below 0.1, indicating little to no skill. As with annual ETS, seasonal ETS exhibits
an increase in 5-year average ETS from the beginning to the end of the period. The trend in
summer day 1.5 ETS is minimal (.01), less than that of winter (0.13), spring (0.10), or fall
(0.10), suggesting that improvements in observations have not lead to as much
improvement in summer QPF compared with other seasons (e.g., Fritsch and Carbone

2004). Similar patterns are seen in ETS for other thresholds.
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The bias score describes the ratio of the number of “yes” forecasts to the number of

“yes” observations, where h, fa, and m are as in (1):

B_h+m (2)

When bias exceeds one, the event is overforecast, and when bias is less than one, the event
is underforecast. A bias of one indicates the event was forecast the same number of times
as it was observed. Bias does not measure the correspondence between individual forecast-
observation pairs, and thus provides no information on model accuracy. Therefore, the
observed bias is independent of forecast lead time. At a 20 mm threshold, precipitation is
underforecast in all seasons (Fig. 3), as indicated by averages over all years and forecast
lead times: winter (0.94), spring (0.89), summer (0.62), and fall (0.72). The bias closer to
unity in the winter may result from the tendency for gauges to underestimate precipitation
that falls as snow (Rasmussen et al. 2012). Annual variability in the bias likely arises from
variation in the number of events forecast or observed from year-to-year. When 5-year
averages of bias (averaged over all lead times) from the beginning to the end of the period
are compared, only winter exhibits a trend in bias over 0.1, with a decrease in bias of 0.24.
3. Verification of Ensemble Forecasts

The ensemble mean versus control QPF was compared by calculating the ETS for
each season over the 29-year period for both forecasts, and then finding the percent
difference (Fig. 4). In general, the ensemble mean provides the most improvement over the
control for lower thresholds and shorter lead times. As thresholds increase, the ensemble
mean is more susceptible to smearing (i.e., multiple non-overlapping positions of the
precipitation maximum across ensemble members), leading to underestimation of the

magnitudes found in the control. This effect is most pronounced in summer, when rain
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amounts are climatologically higher and precipitation is more localized. In all seasons but
summer, and for all thresholds but 40 mm, the ensemble mean has an average of 6% higher
ETS values versus the control through 4.5 days lead time. In all seasons but summer, the 5
and 10 mm thresholds have an average of 10% higher ETS values in the mean for all lead
times through 7.5 days.

The ranked probability score (RPS) measures the difference between the cumulative

distributions of forecasts and observations over a set of categories, as follows:

2

K
RPS = Z (CDFjexc — CDF ) (3)
k=1

where k =1 ... Kindicates the number of categories, and CDF refers to the cumulative
distribution of either the forecast or observations. Categories were chosen to be similar to

those used for probabilistic QPF at NOAA’s Weather Prediction Center!. An RPS skill score

RPS
RPScL’

is defined as RPSS =1 —

where RPScy is the RPS computed using the cumulative

climatological distribution to forecast the cumulative distribution of the observations.
Overbars indicate that values are averaged over time and space. RPSS values less than 0
indicate that a PQPF from the ensemble is no better than using a climatological distribution
as a probabilistic prediction. Seasonal values of RPScL, were calculated at every grid point
using cumulative climatological distributions for each season. Note that comparing the
RPSS values applied here with other ensemble systems with differing numbers of members
will not provide an even comparison, and additional calculations would be needed to

appropriately make such comparisons (Richardson 2001).

1 Categories are mutually exclusive and encompass all possibilities: = 0 and <1 mm, > 1 and
<3mm,=5and <10 mm, =10 and < 20 mm, = 20 and < 25 mm, = 25 and < 40 mm, = 40
and < 50, = 50 and < 65 mm, =65 and < 75 mm, and = 75 mm.
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As with ETS from the control run, when RPSS are averaged over all years and
thresholds (Fig. 5), winter has the highest skill score (0.23), followed by fall (0.19), spring
(0.14), and summer (-0.05). The negative summer value indicates that RPS values are
worse than those that could be achieved by using climatology. In the summer, only day 1.5
RPS values exceed those from climatology. This result indicates that the resolution of the
reforecast system is not designed to predict the scale of the phenomena dominant in the
summer months in the SEUS; intrinsic predictability in the model is reduced in the
presence of convection (Zhang et al. 2003). Systematic deficiencies in the GEFS also
contribute to QPF error, such as the excessive semblance of ensemble members, resulting
in over-confident probabilistic forecasts (Palmer 2012). Average RPSS values beyond day
5.5 are less than 0.1, indicating little to no skill. Seasonal RPSS experience an upward trend
when 5-year average RPSS from the first five years are compared with those of the last 5
years. All forecast leads in every season exhibit this upward trend. This indicates that
better observations have led to not only an increase in accuracy in deterministic QPF, but
also in the ensemble’s ability to provide a probabilistic QPF. The trend in day 1.5 RPSS is
greatest for fall (.27), followed by winter (.20), spring (.12), and summer (.10).
Interestingly, the summer exhibits a positive trend for PQPF as measured by RPSS, while no
trend is observed for deterministic QPF as measured by ETS.

Spatial plots of seasonal RPSS (Fig. 6) qualitatively match the day 1.5 curves in Fig.
5, with winter and fall having the highest RPSS, and spring and summer the lowest RPSS. In
the summer, PQPFs are no better than climatology when measured by RPS in parts of the

domain. Outside of summer, areas in the interior of the domain feature the greatest
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improvement over climatology. Longer lead times follow similar patterns, with the areas of
greatest improvement shrinking in size toward the center of the domain.
4. Conclusions and Future Work

In order to assess QPF skill as a function of lead time, and to quantify the benefit of
the ensemble mean over deterministic QPF, verification of the NOAA second-generation
reforecast dataset has been completed for the SEUS from 1985-2013. This long-term
verification provides forecasters with useful information on the capabilities of the current
generation of NOAA’s GEFS. Both deterministic and probabilistic QPF exhibit long-term
increases, mostly due to the improvement of observations. For deterministic QPF, summer
does not feature an increase, while an increase in summer occurs for PQPF. For all seasons,
day 6.5 and 7.5 QPFs and PQPFs for the SEUS have little to no skill over random chance or
climatology, respectively. The use of the ensemble mean rather than the control offers
benefit on average, especially for lower thresholds and shorter lead times. The fact that
QPF and PQPF both decrease in accuracy in the same seasonal order suggests that
forecasters should not have the same confidence in PQPFs across seasons. For example, a
70% probability of 20 mm in summer is less likely to verify than a 70% probability in
winter, as both the model QPF and PQPF are worse in summer. Reforecasts can be used to
improve forecasts of precipitation through many techniques, such as the analog-based
technique of Hamill and Whitaker (2006) or logistic regression (Hamill et al. 2008).
Verification of these adjusted real-time forecasts has shown them to be superior to the
reforecasts themselves and the unadjusted real-time forecasts (Hamill et al. 2013).

Moore et al. (2014) produced a 10-year climatology of extreme precipitation events

in the SEUS and found that events associated with stronger dynamical forcing were more
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accurately predicted by the reforecasts in terms of ETS, bias, and fractional area. This is
corroborated by the present study of all precipitation events in the SEUS, as the summer
events were poorly predicted and are more likely to be associated with weaker dynamical
forcing. Future work will analyze patterns associated with the most and least accurate
reforecasts of precipitation events in the SEUS. Greater understanding of how the modeled
atmosphere differs from the real atmosphere will allow forecasters and researchers to
identify situations where model guidance is likely to be poor. In addition, continuing
analysis of the complex relationship between forecast precipitation, ensemble spread, and
accuracy will help forecasters to better convert ensemble guidance into useful forecast
confidence (Palmer 2012). The results of such analyses can help forecasters better allocate
time and effort in improving model guidance, and would allow researchers to better

allocate resources in improving observing and modeling systems.
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List of Figures
Figure 1: Annual equitable threat score from 1985-2013 for a) 5 mm threshold, b) 10 mm
threshold, c) 25 mm threshold, and d) 40 mm threshold. Lines on graph are forecast lead

times as indicated in legend. Domain used for calculation can be seen in Fig. 6.

Figure 2: Annual equitable threat score for 20 mm threshold from 1985-2013 for a)
winter, b) spring, c) summer, and d) fall. Lines on graph are forecast lead times as indicated

in legend.

Figure 3: Annual bias for 20 mm threshold from 1985-2013 for a) winter, b) spring, c)

summer, and d) fall. Lines on graph are forecast lead times as indicated in legend.

Figure 4: Percentage change in equitable threat score with forecast lead time when
ensemble mean is compared with control for a) winter, b) spring, c) summer, and d) fall
over the 1985-2013 period. Lines on graph are precipitation thresholds as indicated in

legend.

Figure 5: Annual ranked probability skill score from 1985-2013 for a) winter, b) spring, c)

summer, and d) fall. Lines on graph are forecast lead times as indicated in legend.

Figure 6: Day 1.5 ranked probability skill score from 1985-2013 for a) winter, b) spring, c)

summer, and d) fall. Values less than zero contoured in white.
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17



365
366

367

368

369

0.5

0.4

0.3

0.2

0.1

O'085 88 91 94 97 00 03 06 09 1 0'085 88 91 94 97 00 03 06 09 1
0l5c)| | !unl-quI-Aulg - o.5d). | SlaepTOclt-NP _

0.4F {1 o4} i
0.3 i 0,3/\/*\/\’\/
0ol | \/\/\/—f\—_r

Annual Seasonal ETS, 20 mm Threshold
Mar-Apr-May

a) Dec-Jan-Feb

052)

M

0.4F

0.3F

0.2

M

0.1P 4 01 -
~ /\_/\——\/\/-—\/
O-O — 1 L 1 L 1 1 L 0'0 1 L 1 L L | L 1 1
85 88 91 94 97 00 03 06 09 12 85 88 91 94 97 00 03 06 09 1
|— 1.5d =— 25d =— 35d =— 45d — 55d 65d — 7.5d|

Figure 2: Annual equitable threat score for 20 mm threshold from 1985-2013 for a)

winter, b) spring, c) summer, and d) fall. Lines on graph are forecast lead times as indicated

in legend.

18



370
371

372

373

Annual Seasonal Bias, 20 mm Threshold

Dec-Jan-Feb

Mar-Apr-May

T T T T T T

T T T

Il Il Il Il Il Il Il Il

1 1 1 1 1 1 1 1 1
85 88 91 94 97 00 03 06 09 1 85
C un-jul-Au d
1.5 ) T T ! xj T xg T T T 1.5 )

Il
88

91 94 97 00 03 06 09 1
Sep-Oct-No

T

T T T T T T T

0.4 1 1 1 1 1 1 1 1 1 0_4 1 1 1 1 1 1 1 1 1
85 88 91 94 97 00 03 06 09 1 85 88 91 94 97 00 03 06 09 1
|— 15d =— 25d =— 35d =— 45d — 55d 65d — 7.5d|

Figure 3: Annual bias for 20 mm threshold from 1985-2013 for a) winter, b) spring, c)

summer, and d) fall. Lines on graph are forecast lead times as indicated in legend.
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Figure 4: Percentage change in equitable threat score with forecast lead time when
ensemble mean is compared with control for a) winter, b) spring, c) summer, and d) fall
over the 1985-2013 period. Lines on graph are precipitation thresholds as indicated in

legend.
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Figure 5: Annual ranked probability skill score from 1985-2013 for a) winter, b) spring, c)

summer, and d) fall. Lines on graph are forecast lead times as indicated in legend.
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Figure 6: Day 1.5 ranked probability skill score from 1985-2013 for a) winter, b) spring, c)

summer, and d) fall. Values less than zero contoured in white.
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